Current generation with low-frequency waves
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Various types of traveling waves may be injected into a tokamak to continuously sustain the toroidal current.
Interest in this problem arises from the possibility of operating tokamak reactors in the steady state. The low-
frequency waves most suitable for this task are identified in terms of the power cost for deployment in a
reactor. Means of exciting these waves and tradeoffs with design criteria are discussed. A comparison is made
with the alternative attractive regime of high-frequency waves. Conclusions are based, in part, on the

numerical solution of the two-dimensional Fokker-Planck equation with an added quasi-linear term due to

the waves,

. INTRODUCTION

One of the drawbacks of the tokamak approach to fu-
sion power is that it is, in its simplest form, based on
a pulsed device, limited by the volt-seconds attainable
in the Ohmic transformer coils. This difficulty can be
circumvented, in theory, by generating the toroidal
plasma current with radio-frequency (rf) waves, which
may be injected continuously. The waves would have
a net toroidal component of momentum, so that, when
absorbed by the electrons, a force is exerted that
drives a toroidal electric current. For practical em-
ployment in a reactor, the power required to drive the
current may only be a small fraction of the fusion power
output, Not all types of waves incur the same power
dissipation. Thus, in searching for the most favorable
waves to drive current, we must consider not only the
ease with which the wave can be excited, but also their
individual power requirements.

There are two wave regimes that are attractive in
terms of minimizing the power dissipated for a given
current generated, namely, low and high parallel phase
velocity waves, The former regime of subthermal
phase velocities was suggested by Wort? and is attrac-
tive because in this regime waves have a high momen-
tum content per unit energy. In other words, whereas
the momentum in a wave is proportional to its wave -
number, k, the energy carried by the wave is propor-
tional to its frequency, w, so that waves with low w/k,
have a high parallel momentum content (where k, is
the wavenumber in the toroidal direction), When the
energy of such waves is absorbed by electrons, the mo-
mentum absorbed is proportionately higher. Wort en-
visioned the use of subthermal-parallel-phase-velocity,
low-frequency compressional Alfvén waves to achieve
current generation. In this context, we consider the
low-frequency regime to be synonymous with the low-
phase -velocity regime.

The alternative approach of using waves with high-
phase velocities was pointed out by Fisch.? Although
waves here have little momentum content, their mo-
mentum and energy are absorbed by fast electrons.

The electrons that carry the current are relatively col-
lisionless and so retain their momentum longer than the
thermal electrons which carry the current when low-
phase-velocity waves are employed. The relative in-
frequency of collisions encountered by the current car-
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riers compensates for the dearth of momentum in the
driving waves. This approach was originally envisioned
employing the lower-hybrid wave with a phase velocity
parallel to the magnetic field several times the electron
thermal velocity.

Numerical studies® of the use of high-phase-velocity
waves, improving on the accuracy of the original an-
alytical studies, have pinpointed the amount of power
dissipated for given generated current. Before a sys-
tematic comparison can be made of the two phase ve-
locity regimes with the goal of recommending one re-
gime over the other for application to tokamak reactors,
an accurate calculation must also be made of the power
dissipated by the low-phase-velocity waves. The task
that we set forth for ourselves in this paper is to iden-
tify the relevant parameters in low-phase-velocity cur -
rent drive and to numerically determine the power re-
quirements in this operating regime, thereby enabling
comparison with the alternative regime.

The task of evaluating the low-phase-velocity mech-
anism of current drive is broader than that of the high-
phase -velocity mechanism and the numerical computa-
tions are trickier., The parameter space to be explored
is larger since, as we shall see, it includes the wave
type and wave amplitude. The paper is organized as
follows: In Sec. II, we derive the acceleration of elec-
trons due to waves of various types. In particular, we
consider transit-time magnetic pumping, Landau
damping, and the combination of the two that results
when Alfvén waves are employed.

The steady-state power dissipated and the steady-
state current generated result from a balance between
the absorption of wave energy and momentum by reso-
nant electrons and the collisional processes which dis-
tribute the absorbed energy and momentum to all par-
ticles of both species. In Sec. III, we show how these
effects may be described by the linearized Fokker -
Planck equation, but with the drift of the electron pop-
ulation in parallel velocity space self-consistently in-
cluded, a detail that could be safely ignored only in the
high-phase-velocity regime. In Sec. IV, we describe
our numerical approach to solving the Fokker-Planck
equation, comparing various numerical techniques.

In Sec. V, we sort through the large parameter space
of dependencies to isolate those relevant to reactor ap-
plications. We numerically determine the resistance
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encountered by the ri-driven currents for each type of
acceleration mechanism and as a function of wave am-
plitude and spectrum location. The most important
wave regime is that of low-phase velocity and low am-
plitude. Exemplary cases in this wave regime are de-
scribed in greater detail in Sec. VI.

In Sec. VII, we consider the question of wave excita-
tion. Having numerically determined the plasma re-
sistance to current-drive by various waves, we explore
trade-offs between minimizing the power dissipation
and relaxing other design features. The comparison of
the two wave regimes in terms of suitability for applica-
tion to reactors is developed in Sec. VIII. In that sec-
tion, we write the fraction of the fusion power output
used to drive the waves as a function of macroscopic
parameters only, such as temperature, density and re-
actor dimensions. In Sec. IX, we present our conclu-
sions, including a perspective on related effects not
considered in this study.

Il. THE WAVE DIFFUSION COEFFICIENT

The force exerted on electrons in a large, steady
magnetic field B, in the direction parallel to the field
may be written as

dv 3B,
mdtz:—eE‘_uB_Z" (1)

where u=mv?/2B, is the magnetic moment and the z
direction is taken to be parallel to the steady magnetic
field. In our application to the torus, we will employ
the approximation that these field lines point in the tor-
oidal direction, ignoring any actual discrepancy be-
tween the toroidal and parallel directions. Equation (1)
is valid in the small electron gyroradius limit, i.e.,
k.p, << 1 (where k, is the perpendicular wavenumber),
which is always the case in our applications. The field
components E, and B, represent traveling waves in the
z direction and will be related in a manner dependent on
the plasma dispersion. For example, it is possible to
excite electrostatic waves so that only E is nonzero in
Eq. (1). These waves are Landau damped by electrons
resonant with the wave. In the event that the waves

are uncorrelated, there results diffusion of the elec-
trons in parallel velocity space, i.e., in the absence of
other effects we may write

af _ @ i
g — 2
8t a,vz Dr!(vz)av‘f’ ( )
where f is the electron distribution function. Here, the
quasi-linear diffusion coefficient is due to Landau
damping, i.e., D, =D,, which is givea by
16me26,,
DL (‘U,) = —_—5& - (3)
mV, kzsw/v‘

‘If the spectral energy density §,, is centered at &, cor-
responding to phase velocity v,, and spread over a nar-
row width A, of parallel wavenumbers, we can approxi-
mate

#me*( EZ
—_———mzva" y Ugy <V, <V,
DL('U‘) = (4)
9, otherwise,
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where () denotes time average, and we identified v,,
and v,,, respectively, as the slowest and fastest paral-
lel phase velocities in the spectrum. We note that de-
scribing the wave -particle interaction as a diffusion
phenomenon is strictly valid only when the wave spec-
trum is sufficiently broad. However, in the case at
hand, where we intend to balance the wave-particle ef-
fects against collisional effects, which are turbulent,

it would, in fact, be appropriate to use the diffusion
equation even when the wave is fully coherent., This is
true even if the trapping time for the wave is shorter
than the collision time, because we are interested in
the behavior of the distribution function f over times
longer than a collision time. The effect of the trapping
is approximately to flatten the distribution function over
a trapping width after several collision times, which is
the same effect exhibited by Eq. (2).

It is possible that E, in Eq. (1) vanishes, so that only
the traveling magnetic field accelerates the electrons.
This mechanism is called “transit-time magnetic
pumping.” By strict analogy with the Landau damping
case, merely substituting the magnetic acceleration
term for the electric acceleration term, we can form a
diffusion equation of the form of Eq. (2), except that
the diffusion coefficient is

me® u2k ( By
mEAW
D(v,)= (5)
0, otherwise .

s Vg <V, <Vp

The main difference between D, as defined in Eq. (4),
and D, is that D, exhibits a strong dependence on v,,
namely, D _~v}. We will find that this preferential dif-
fusion of high-v, electrons, which are relatively col-
lisionless, plays an important role in reducing the ef-
fective plasma resistivity to currents generated by
magnetic pumping.

The transit-time magnetic pumping is, however, the
sole diffusion mechanism only when the plasma conduc-
tance can be ignored. For most applications, the plas-
ma will itself generate an E, field, so that both right-
hand side terms in Eq. (1) are present.*® The origin
of the E field, as argued by Stix,’ is the low-frequency
magnetic field fluctuations which set up parallel ion
density fluctuations. Quasi-neutrality is achieved by
means of a self-consistent electric field E, which acts
on hot electrons. This reasoning follows only from the
assumption that E +v,%xB =0, where v, is the fluid
velocity, and this assumption certainly is valid in plas-
mas of interest. The resulting E, field can be related
to the fluctuating B, field by

) (2).

where &, is the electron gyrofrequency. Using Eq. 6)
in Eq. (1), we can write the force equation for electrons
as

dve e

3B
= £ ("M
™ T 2q,

3z

(2034 - Uf)

Note that the Landau damping and magnetic pumping
forces are always out of phase, the former force domi-
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nating for v, small and the latter for » large. This is
in contrast to the force equation for the ions, wherein
these two forces would be in phase and additive. For
the electrons there is, in fact, an exact cancellation of
these forces when v? = 207,.

By analogy with the Landau damping and magnetic
pumping cases, we can write the diffusion coefficient
for low-frequency waves in a conductive plasma as

21,2 2
ek: <—B§> (2vf, -2, v, <v,<v,
A,y By
D,(v,)= (8)

otherwise,

T
4

(=]

b

Qur later interest will be focused on diffusion due to
Alfvén waves, a particular case of the low-frequency
waves just treated. Hence, we will refer to D, as the
Alfvén wave diffusion coefficient. Qur concern will
center on whether the Alfvén wave diffusion is more
similar to diffusion by Landau damping or magnetic
pumping, given that it retains canceling terms due to
both mechanisms. Of special interest and to be deter-
mined numerically is whether the currents generated
by the Alfvén wave encounter the reduced resistivity
that is expected in the case of magnetic pumping.

Throughout this paper we assume that the diffusion
coefficient for any of the three mechanisms is finite
only in a cylindrical or disk-shaped region of velocity
space, i.e., v, <v,<v,,, with no other dependence on
v,, but with a » -dependence characteristic of the wave
type. Although for a broad spectrum of waves this
modeling is reasonable, in the event of single-wave
excitation the shape of the resonant region can be quite
different. For example, in the case of magnetic pump-
ing, the resonant region would be shaped in the form of
the complement of a cone, since the trapping width of
the single wave varies as (uk, B,)'/2. What we wish to
show now is that this distinction in the shape of the
resonant region is immaterial for parameters of inter-
est in reactors. Hence, considering the resonant re-
gion as disk shaped is sufficiently general, The rele-
vant regime for reactors, as we shall see later, is in
the limit of low D, and for a narrow spectrum of wave
parallel phase velocities.

To demonstrate the equivalence of the two represen-
tations of the shape of the resonant region, consider the
power dissipated as a function of v, which we may
write as

2
namv° of f”zz of
= | =" Y gy = S
Py(v,)= f R dv,= s nomv, D4 Py dv,
= =ngmDyy f(,, 0,0) B V3,/V5s 9)

where A is the width of the resonant region, i.e., A
= Upy — U, and D, is assumed small enough so that
f(v,) remains essentially Maxwellian. In addition, we
have agsumed that 4, is small compared with v,,, ex-
cept possibly at large v, where this assumption need
not hold since negligibly few electrons would be af-
fected. The point is that, in this limit, P, (v,) depends
only on the product D, 4 rather than on D,, and 4, in-

v
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dividually. The task is to show that the perpendicular
dependence of this product is the same whether one em-
ploys the many-wave limit, disk-shaped region, or the
single -wave limit, complement-of-a-cone shaped re-
gion. Should the perpendicular dependence of P, be
identical, we can assume that the other dynamics in
the problem are also identical.

Note that in the many-wave limit D,, ~A?, where A
denotes the relevant acceleration term in Eq. (1). For
example, for magnetic pumping, we would have D,
~(v?B,)’. In the opposite limit, trapping occurs and we
have instead A ~A'/2?, where A now exhibits a v, de-
pendence. Since the limit of resonance broadening is
now applicable, we also have® A, ~D_*/%. Thus, in
either limit A D, ~A?, so that the dependence of P, on
v, is identical, and the resulting dynamics is indis-
tinguishable. We choose to concentrate our numerical
work on the many-wave case because the variation in
D, is more easily handled than the variation in 4, due
to the finite grid spacing. We bear in mind, however,
that our results, in this limit, can also be applied to
the trapping limit.

11l. MODELING THE COLLISIONS

According to the quasi-linear diffusion equation (2),
the waves deposit energy into the distribution of elec-
trons until f is a constant where D, is finite so that the
effect saturates. In practice, collisions prevent the
plateau in f from forming and allow a realistic steady-
state distribution function to be obtained wherein ener-
gy is continuously deposited by the waves into the reso-
nant particles and collisions redistribute this energy
amongst all the particles.

In order to model the behavior of the distribution
function under these circumstances, we add a Fokker-
Planck collision term (3f/at), to Eq. (2), i.e., we write

of @ a af
—=—D,—f+|=] .

at avz rf a'sz <at)c (10)
For many purposes, it is convenient to rewrite Eq. (10)
as

a

al;:—Vv‘SI-V"(SrﬁSﬁSs), (11)
where §,,= -D,, 3f/3v,2 and S, and S, are the fluxes of
electrons due to collisions off the electron and ion back-
grounds, respectively.

The current J produced by the wave and the power P,
dissipated by the wave are given by

J= -—enofv,,fdv, _ (12)

P,=—mnofv,D,,;dev=fv'Sr,dv. (13)

The task facing us is to solve Eq. (10) for the various
forms of wave diffusion D, to determine J and P, in
the steady state, and finally to assess the feasibility of
current drive by waves.

Since we are primarily interested in the steady-state
solutions to Eqg. (10), the question arises as to the cir-
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cumstances under which Eq. (10) has a useful steady-
state solution. In a realistic situation (e.g., in a re-
actor), the steady state is maintained by a balance of
several sources and sinks of energy, momentum, etc.
In writing Eq. (10), we have already considerably sim-
plified this picture by ignoring the spatial variations of
f, and the presence of sources (e.g., alpha particle
heating) and sinks (e.g., radiation). This is done be-
cause by ignoring the additional terms we are able to
concentrate on the physics of the rf current-drive and
we do not have to make numerous ad hoc assumptions
as to the way these terms enter. Unfortunately, Eq.
(10) as it stands does not approach a steady state since
there is no way for the energy deposited by the waves
to be lost. We correct this deficiency by calculating
(af/at), assuming that the background electrons and ions
are Maxwellians of equal and constant temperatures T.
We may picture the flow of energy as follows: Energy
is deposited into the electrons by the waves; this is
transferred, via collisions, into the bulk electrons,
conceptually treated as a separate background species
(a small fraction of energy also goes to the bulk ions);
the energy is then lost to the system in some unspeci-
fied way. Although we employ equal background elec-
tron and ion temperatures in our numerical studies, it
should be appreciated that our conclusions are sensitive
only to the background electron temperature.

The assumption of Maxwellian backgrounds solves
the problem of energy equilibration. The other impor-
tant physical quantity we must consider is the parallel
momentum. Radio-frequency current-drive deposits
momentum in a selected class of particles. The rate at
which this momentum 'is lost determines the efficiency
of the process, Although the mechanism for momentum
loss in tokamaks is not well understood, it is likely that
momentum in the electrons is first lost to the ions be-
fore being lost by the plasma (e.g., by collisions with
neutrals). We therefore take the ion background to be
stationary, but allow the electron background species to
drift. The amount of the drift is determined by requir-
ing that the total force F on the electron test species
due to the electron background species is zero, so that
the momentum is lost by the electrons only via the ions.
We may write this condition as

FEmnofS,deZO. (14)

It should be understood that Eq. (14) is to be solved im-
plicitly for the electron drift velocity.

We should emphasize that although we have been
forced to adopt an approximate model of collisions, our
approach yields no less accurate results than ap-
proaches which do treat collisions exactly and are com-
putationally more time consuming. Consider, for ex-
ample, the alternative approach which would disdain
linearizing the Fokker - Planck equation and would at-
tempt an exact treatment of the collision terms. This
was the approach originally envisioned by Rosenbluth
et al.,” who suggested an efficient expansion of the col-
lision operator in Legendre harmonics. Treating the
collision operator exactly, however, immediately im-
plies that other assumptions must be introduced to as-
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sure that a steady state is reached. (Not reaching the
steady state would itself introduce other uncertainties.)
Thus, in the absence of accurate models for sources
and sinks of particles, momentum, and energy, an ab-
sence that, in fact, may be safely assumed,  the ¥exact”
treatment of the collision operator would not yield more
precise answers to the questions that we ask here.

To summarize the treatment of the collision term:
(af/at), is calculated assuming constant temperature
Maxwellian background electrons and ions (see, for in-
stance, Trubnikov®). The ions are taken to be station-
ary while the electrons drift parallel to the magnetic
field with velocity v, which is chosen to satisfy Eq. (14).
As in Ref. 3, we chose T,/T,=1 and m,/m,=1836.
The solution is insensitive to the precise magnitude of
these two quantities. We would, for instance, have ob-
tained the same results had we taken a much larger
mass ratio. In addition, since we are concerned with
applications to fusion reactors, we take the ion charge
state Z, to be 1,

Having taken the background temperatures to be con-
stant, it is then convenient to normalize velocities to
the electron thermal velocity and times to the collision
time. Thus, we define u=v/vy,, w=1v,/0, S=0,/V4,
and A= 4 /v,,, where v,,=(T/m,)'/2. Similarly, we in-
troduce T =v,t where

logAw,
Yo=73 ™o, (15)

where log A denotes the Coulomb logarithm. The azi-
muthal angle 6 is defined by 8=cos™(w/u). The wave
diffusion coefficient is normalized to v vZ,:

D, = D,(w),
D(w,s)= D’: = D, = Dyw)s*, (16)
VO‘U“
D, = D,(w)(2 —32)2\,
1.25— T T T T
1.00
vg/J
0.75}- o%e
0.50
0.25
0

FIG. 1. w,/J vs (w) = G +w,)/2 for the cases of Landau
damping (open circles), magnetic pumping (x's), and Alfvén
waves (closed circles) in the low~D, limit. Here, we took
Dy=0.001. The solid curve is given by J/P,=(1+0.1 {(w) 3)-1
and is a rough semianalytic fit to the data. No attempt was
made to optimize this fit. Cylindrical coordinates were em-
ployed for {w) <1.8 and spherical coordinates were employed
for (w)=1.8.

N. J. Fisch and C. F. F. Karney 30

Downloaded 03 Sep 2003 to 198.35.4.106. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



where we have explicitly written out the velocity space
dependencies of D for the cases of Landau damping,
magnetic pumping, and Alfvén wave excitation, respec-
tively. We shall take D (w) to be equal to D, (a con-
stant) for w, <w <w, and to be zero elsewhere.

Other physical quantities are made dimensionless by
multiplying them by the relevant powers of v,,, v,, the
electron charge density —en,, and the electron mass
density mn,. In particular, J is normalized to —en,v,,
and P, to myn v vi,.

The importance of including the drift can be seen
from Fig. 1, where we compare the drift with the cur-
rent produced by the damping of waves of various phase
velocities. When the normalized phase velocity w is
large, v, scales as J/w®, a result anticipated by Ref. 2.
Thus, the results of Ref. 3, which dealt with the large
w limit but neglected the drift, are not materially modi-
fied by the drift. For w small, the case treated in this
paper, the drift is roughly equal to J. Thus, we expect
the drift to make a significant difference to the ratio
J/P,. This is what is observed numerically: This ratio
calculated including the drift is about twice its value
without the drift,

IV. NUMERICAL SOLUTION OF THE FOKKER-
PLANCK EQUATION

The program used to solve Eq. (10) is essentially the
same as that used in Ref. 3. Three modifications were
made to that program: Firstly, following the sugges-
tion of Ref. 9, we changed the way in which the col-
lisional friction terms in Eq. (10) are computed. This
makes the steady-state solution obtained numerically
with no rf very close to a Maxwellian,

Secondly, we added the capability of solving Eq. (10)
in cylindrical coordinates (w,s) as well as in spherical
coordinates (u, 6). The spherical version treats the
collision term fully implicitly while the cylindrical ver-
sion treats the rf diffusion term fully implicitly. Which
version is used depends on how important are the terms
which are treated explicitly. Generally, all the work
with waves at high-phase velocities was performed in
spherical coordinates. Cylindrical coordinates were
used for the cases where the rf phase velocity was
small, although the spherical version could also be
used if the wave amplitude was small.

The third change made was to allow the background
electrons to drift. As discussed in the previous sec-
tion, this drift was chosen to make the force of the
background electrons on the test electrons equal to
zero, The force F was computed using the appropriate
discrete representation of the integral in Eq. (14).
(This was determined by demanding that the parallel
momentum be conserved in the discrete system.) It
was only necessary to recompute the drift once every
20 steps. The additional computation was then small
compared with the rest of the program.

The majority of the numerical results presented here
were obtained using the cylindrical version of the pro-
gram. The domain of integration, when using cylindri-
cal coordinates, was [w]s 3 and s 5. The grid size
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was 0.1 in both directions and the time step was 0.01.
The initial conditions were taken to be a Maxwellian

AT =0)=f, )= 2m)% 2exp(~3u?) . (17

Generally, integration of Eq. (10) to 7=30 was suffi-
cient to obtain a steady state.

The chief difficulty in interpreting the results arises
because of the finite grid size. This means there is
some uncertainty as to the location of the spectrum in
velocity space which introduces a systematic error into
the results obtained by the cyclindrical version. In
order to gauge the magnitude of this effect, we ran sev-
eral of the cases, for which D and w were small, with
the spherical version and with various grid sizes. The
discrepancy between the results obtained by the two
versions of the program was about 10%.

V. NUMERICAL CALCULATION OF RESISTANCE

The resistance of the plasma to rf-driven currents
depends on the type of wave, the wave phase velocity,
and the wave amplitude. To see how these dependen-
cies arise, we first analytically consider the linear re-
gime, D--0, which will enable us to develop an intui-
tion about the problem, to establish notation, and to
determine the relevant scalings. The numerical find-
ings will then be presented in light of the qualitative an-
alytic arguments.

In the linear regime, the power dissipated can be
computed from the direct damping of the waves on an
unperturbed Maxwellian electron distribution. Using
Eq. (9), but now writing all quantities in normalized
units, we find

Pdsf21rsgisf Pd(w,s)dwzf 27sPy(s) ds
0 = 0
(18)
:2nf(w1,0)f se"z/zf w2D(w, s)dw ds ,

0

where we assumed that Aw, << 1 so that f may be taken
as independent of w over the resonant region. For later
convenience, we related the quantities Py, Pa(s), and
Py(w,s), which are distinguished by their arguments
and represent the density of power dissipation in con-
figuration space plus the argument space. Assuming
that D(w,s) is as given by Eq. (16), i.e., finite only for
w between w, and w,, wherein it is only s dependent, we
can write
_wy —ws ‘ ® ~s2/2

pP,= 3 f(wl,O)j; D(w,,s)e*" /2 2ns ds . (19)
The calculation of the current in the linear regime is
more difficult, since it necessarily involves calculating
distortions from the Maxwellian distribution. However,
we can derive a scaling law. First note that the incre-
mental energy W absorbed by an electron moving with
parallel velocity w is related to the incremental mo-
mentum P absorbed by

W=wP. (20)

The power dissipated in the steady state can be obtained
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by differentiating Eq. (20) to obtain

w
P,(w,s):l—:wﬂbéwu(w,s)P ,

ot ot (21)

where v(w,s) is the rate at which collisions destroy mo-
mentum absorbed at coordinates (w,s). Since the mo-
mentum is directly related to the current, we can write,
in normalized notation,

Jw,s)/Pgw,s)=[wv(w,s)]™. (22)

Equation (22) determines the amount of current present
in the steady state, i.e., when the collisional destruc-
tion of momentum balances the steady absorbtion of
momentum at (w,s). Using Eqs. (18) and (22), we find
that the total current density is given by

J:f.’Znsds f” v wDf dw . (23)

0 -0
For w<« 1, v becomes dependent on s only. Assuming
then w,, w,<« 1 and D(w,s)= D(w,,s) between w, and w,
and is zero elsewhere as in Eq. (16), we get
wZ _ w2 © a -s2/2
J =—a——L2 27s D(w,, s (w,,s)e™ " *fw,,0)ds . (24)
0

Comparing Eqs. (19) and (24), we find the scaling

3 (w2 -—w? Cw
_—f 221 =7
J/P._z(wg_wf)c,, o (25)

where Eq. (25) defines w,, an average resonant w, and
Cy is independent of the spectrum location, depending
only on the wave type, i.e., the dependence of D on s in
Eq. (16).

We expect that the linear theory given by Eqgs. (19),
(24), and (25) will be valid when D is small enough. In
this limit, both J and P, are linear functionals of the
wave spectrum in that contributions to these quantities
arising from several spectra are purely additive.
While »(0,s) is not known precisely, certain conclu-
sions can still be drawn. To the extent that v is due to
ion pitch-angle scattering, we have v~s™®, Although

60 T T T T

J/P4

FIG. 2. J/P,vs w, for each of the three cases, Symbols have
the same meaning as in Fig. 1. The solid lines are rough
semianalytic fits to the data. No attempt was made to optimize
the fit. The upper line obeys J/P,=13/w,+1.4w’+5 and the
lower line obeys J/P,=8/w,+1.4wl+2. Coordinates were em-
ployed as in Fig. 1.
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the energy scattering by electirons somewhat alters this
picture, we still expect that »*(0,s) is larger for larg-
larger s. Thus, comparing Eqs. (19) and (22), we can
conclude that waves which induce diffusion at larger s
will have a larger J/P,.

The ratio J/P, has been numerically datermined for
a wide range of parameters. In Fig. 2 we display J/Pq
as a function of the weighted parallel velocity w,, de-
fined by Eq. (25). The various wave types are dis-
played separately; we use x’s, closed circles, and
open circles to denote, respectively, magnetic pump-
ing, Alfvén waves, and Landau damping. The solid
lines are semianalytic fits to the data and will be ex-
plained. We took D,= 1072 throughout in order to ap-
proach the linear limit (although, obviously, finite D,
will always appear large somewhere, say, as s — ).
In all cases tabulated in Fig. 2, we took A=0.2. A
separate check of isolated cases showed that D, was
small enough so that a larger A would produce a J and
Py that represented only additive contributions of nar -
rower spectra.

The salient feature of Fig. 2 is that, in fact, the an-
alytic scaling given by Eq. (25) is justified in the limit
w, ~0. The constant C, may be determined numerical-
ly to fit the data for each wave. It is found that

CA sz:IS,
C, =8,

(26a)
(26b)

where C,, C,, and C, represent the appropriate Cy to
be used in Eq. (25) and, respectively, denote the cases
of Alfvén waves, magnetic pumping and Landau damp-

ing.

As we pointed out in Sec. IV, there is some uncer-
tainty in the data for the low-w cases due to the poor
resolution of the computer grids. The results in Fig.
2 for w, <1 were obtained using the cylindrical version
of the program. Since the edges of the rf spectrum
line up with the grid in this case, the errors that arise
because of the uncertainty of the spectrum location are
systematic. We can therefore be confident that the
agreement in the 1/w, scaling between the analytical
and numerical results is real. Comparisons with the
spherical version which predicts a somewhat larger
J/P,, indicate that the constants C, may be in error by
as much as 10%.

In the opposite limit, that of high w,, the Landau
damping, magnetic pumping, and Alfvén wave resuits
become identical. In this limit, J/P, is proportional to
a weighting of w? over the resonant interval.? For the
narrow spectra that we chose to plot in this limit, the
exact weighting is immaterial with corrections only of
order A/w. We numerically find J/Py=1.4 w?, where
the constant 1.4 is found by fitting the data over an ad-
mittedly short range in w. This constant roughly
agrees with that found in previous numerical studies,®
which dealt with the high-D limit.

Since the low-w, approximation vanishes at high w,,
whereas the high-w, approximation vanishes at low w,,
we can uniformly approximate J/P, by adding the 1i-
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miting forms. Thus, we write

J/P,=Cy/w,+1.4 w?, @1

wherethe coefficients C, are givenby Egs. (26). We should
point out that although we do expect all cases to exhibit the
same asymptotic behaviorJ/ P, ~w?, for w,large, we also
expect a wave-dependent first-order correctionto this re-
sult. This correctionwouldbegivenbyJ/P,~w? +y, where
vyisaconstant dependent onthe wave type. Inthe case of
magnetic pumping or Alfvén waves, we expect y, to be
larger than in the Landau damping case, since the cur-
rent carriers are situated at higher v,. Although a
good analytic fit to the numerical data could be obtained
with Eq. (27), a slightly better fit can be obtained by
adding the vy, term. The uniform approximation, in-
cluding a roughly fit y, term, is shown as solid lines

in Fig. 2 for either case. (The Alfvén wave and mag-
netic pumping cases are grouped here as one case.) An
excellent fit to the data is obviously obtained.

The three curves of Fig. 2 converge at large w, be-
cause, in that limit, the collisionality of the resonant
electrons is dominated by their parallel velocity so that
the resistance is relatively insensitive to exactly where
in v, space the momentum is absorbed. For precisely
the same reason there is little dependence on the mag-
nitude of D, in this limit. The independence from D,
does not, however, hold true in the low-velocity re-
gime. For example, while displaying a significant
variation at low D,, J/P, for the three waves at large
D, must become identical, since the effect of each of
the waves is the same, to completely flatten the reso-
nant region is parallel velocity space. In Fig. 3 we
show the dependence on D, for the three waves for ex-
citation between w, =0.1 and w,=0.3. As expected
from the argument given here J/Pd for the three waves
does converge for D, large. Furthermore, note that
for each wave J/P, monotonically decreases with D,.
This results because, with increasing D,, the wave
damping at high v, becomes saturated sooner than at
low v, where the resonant electrons are far more
collisional. The current is then generated, to an in-
creasing extent by the low-v, collisional electrons,

0 )l

60

J/P

50|

40

30

20
-5 -4 3 -2 o 0 | 2
LOG D,

FIG. 3. J/P,vslog;oDy. Symbols have the same meaning as in
Fig. 1. The three upper curves, converging at large D,, are
for w,=0.1 and wy=0.3. The lowest curve is for Alfvén waves
with w;=0.3 and w,=0.5.
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thus encountering greater resistance.

The increase in resistance with higher D, saturates
when the resonant region is plateaued also for small
v,. At the other extreme, the decrease in resistance
with lower D, saturates when electrons are not pla-
teaued anywhere except at very high v,, where there
are exponentially few electrons. The crossover be-
tween these two limits is most dramatic for the Alfvén
wave and magnetic pumping cases, where J/P, changes
by over a factor of 2. It is not difficult to analytically
estimate the crossover point. Assume that most of the
power is dissipated in the linear regime at s =s,.
Then, as D, increases, we expect the most dramatic
change in J/P, to occur when the power dissipation
saturates, i.e., when the distribution function is flat-
tened in w space at s =s,. This occurs when the col-
lisional diffusion equals the wave diffusion, i.e., when

D=s;*=D, (D/D,), (28)

where D, should be the coefficient D, at the crossover
point to the large-D, limit. From Eq. (19), the dis-
tribution of sP,(s) for large s is given, in the linear li-
mit, by

sP(s)csse™/2, (29)

since for large s and for magnetic pumping and Alfvén
waves, D~s*. The factor of s is included to reflect
that due to the cylindrical geometry, the dissipation re-
gion is larger at larger s. From Eq. (29), we easily
determine that the most power is dissipated at s,=v 5.
Using Eq. (28), we determine D, ,~4 x 107, which
should be independent of w for w small. Although this
derivation is admittedly crude, the result is consistent
with Fig. 2 not only for the spectrum spanning 0.1-0.3,
but also for the spectrum spanning 0.3-0.5, which dis-
plays the same crossover characteristics.

It is interesting to compare the numerical results
with Wort’s original calculation. He approximated J/P,
based on an argument that does not distinguish wave
type, amplitude, or phase-velocity regime, He rea-
soned that all the absorbed momentum would be dis-
tributed equally among all electrons, resulting in a
drifting Maxwellian electron distribution. The resulting
current is then assumed to obey Spitzer resistivity.
Since the redistribution of momentum conserves mo-
mentum but not energy, the overall power dissipation
is increased by the ratio of w, to 7, the electron drift
velocity. - Thus, Wort predicted that the total power
dissipated would be Py =ng,J *w,/v,, where 7g, is the
Spitzer resistivity. Actually, Wort’s reasoning should
lead to about twice this power dissipated, since a
drifting Maxwellian population encounters, roughly,
twice the Spitzer resistivity. It turns out, however,
that (in normalized form) Wort’s result is J/P,~15 w!,
which can be seen from Eq. (27) to be in fairly good
agreement with the numerical results forAlfvén waves or
magnetic pumping in the limit of low D and low w,.

VI. THE STEADY-STATE DISTRIBUTION

Since the cases of greatest interest are those for
which the spectrum width is narrow and D is small, we
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undertake a closer examination of typical cases in this
regime. The steady-state distribution function f in this
regime is close to a Maxwellian, so in order to see
what is happening in the steady state, we look at 6f, the
difference between f and £, and at the flux S.

Figure 4 shows 6f=f-f, for w,=0.1 and w,=0.3 for
each of the three wave types. D, is chosen to be 10™
so we are well into the linear regime, as can be seen
from Fig. 2. The finite value of D at s =0 for Alfvén
wave excitation and Landau damping causes a density
depression for # <w,. This is isotropized by the
strong pitch angle scattering by the ions. For mag-
netic pumping, D vanishes at s =0, and the depression
is absent. However, in all three cases, the drift of
the background electrons causes a sympathetic drift in
the test electrons. This is visible as a density in-
crease at w~1 and a corresponding decrease at w ~-1.
The effect of the null in the Alfvén wave diffusion coef-
ficient at s =v 2 can be clearly seen.

In the steady state, the flow is incompressible, i.e.,
V,'S=0. Therefore, rather than plotting the flux as a
two-dimensional vector field it is more convenient to
plot the streamlines of the flow. The flux 8 is tangen-
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FIG. 4. Plots of 3f(w, s) for the cases of (a) Landau damping,
(b) magnetic pumping, and (c) Alfvén wave excitation. In each
case, Dy=10"¢, w;=0,1, and w,=0.3. The data are plotted
for -3<w<3and 0 ss<35.
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tial to these streamlines. Plots of the streamlines

for the three cases shown in Fig. 4 are shown in Fig. 5.
These show a much greater variety than the plots of 6f.
The two extremes are given by the cases of magnetic
pumping and Landau damping. In the case of Landau
damping, the competition between the tendency of the
wave to flatten the distribution in the parallel direction
and that of ion collisions to flatten it in the azimuthal
direction causes a strong flux in the s direction in the
resonant region. This flux closes on either side of

the spectrum. This picture is very similar to that seen
with high-phase-velocity waves.® In the case of mag-
netic pumping, we again have a component of flux in the
s direction in the resonant region, but this is superim-
posed on a stronger flux in the plus or minus w direc-
tion. This is caused by the quartic dependence of D on
s, which drives electrons at high s (where the diffusion
is strong) in the plus w direction. The particles are
able, however, to cross the resonant region against the

5 T

{a)

5 T
} (b)

FIG. 5. The streamlines of the flux S for the three cases (a),

(), and (c) given in Fig. 4. The arrows indicate the direction
of the flux. Equal amounts of flux flow between adjacent con-

tours. The vertical lines represent the limits of the resonant

region.
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direction of collisionless diffusjon at lower s where D
is much smaller. The smaller eddy seen at s <1 is not
directly caused by the wave but arises because of the
relative drift of the ion and electron backgrounds. The
streamlines for the Alfvén wave damping are a compo-
site of the two previous cases.

We now wish to depict by means of two transitional
cases, a change in the topology of the streamlines as
the wave spectrum is driven at higher phase velocities.
Figure 6 shows the streamlines for the case of mag-
netic pumping for two larger phase velocities. As w,
and w, are increased, the flux in the resonant region
becomes more nearly parallel to the s direction and
this flux can close on either side of the spectrum. Both
these features are seen in the streamlines for the Lan-
dau damping case, Fig. 5(b). Indeed, as the phase
velocity of the waves is increased, the patterns of the
streamlines for all three types of waves approach those
of the high-D Landau damping case (cf. Ref. 3). How-
ever, in the case of magnetic pumping, this is accom-~
plished through the emergence of an x point in the flux
field [located at w =0, s=2 in Fig. 6(b)]. Similarly, al-
though we do not show it, an x point develops in the flux
field in the case of high-phase-velocity Alfvén waves.

Vil. EXCITING THE ALFVEN WAVE

In order to evaluate the attractiveness of driving
steady -state currents in a tokamak reactor with low-
frequency waves, we must first determine the most ef-

1O

-3

FIG. 6. The streamlines of the flux S for magnetic pumping
with Dy=10"4 and @) w;=0.5, w,=0.7, (b) w(=1.5, w,=1,7.
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ficient excitation structure for the waves. We envision
that the generated current is substantial enough so that
the reactor can be continuously operated, and that the
most efficient means of excitation incurs the least pow-
er dissipation. We bear in mind, however, that the op-
timum wave parameters may involve concessions in
other aspects of the reactor design.

Firstly, as we showed in Sec. V, the type of wave is
of crucial importance. Far less power dissipation is
incurred in the use of transit-time magnetic pumping as
an acceleration mechanism than in the use of electro-
static parallel electric fields (Landau damping). As
pointed out in Sec, II, when E +v,x B ~0, there will
always result a parallel electric field accompanying the
magnetic pumping. This results in the Alfvén-wave
type of the acceleration mechanism that is, in fact,
comparable to magnetic pumping in terms of efficiency.
In the following, we assume excitation only of waves
with this characteristic.

For maximum efficiency in generating current, the
Alfvén wave should possess the richest momentum con-
tent yet avoid depositing its energy to the ions. The
damping on the ions will be nearly absent if v, is large
enough, say, several times the ion thermal velocity.
This locates v, at roughly six times the ion thermal
velocity since the momentum content of the wave is
highest at low v:, while the ion damping sets in abrupt-

ly when v, enters the range of the thermal ions. It is
convenient to define
a=w/kyy, (30)

and the argument given here implies that a =6 yields
the maximum efficiency for current drive.

Although choosing « large enough avoids ion Landau
damping at the fundamental harmonic, the ions remain
susceptible to damping at higher harmonics of the ion
cyclotron frequency. In order to avoid this damping at
higher harmonics, w should be chosen to be less than
half the ion cyclotron frequency. This assures that all
resonant phase velocities, (w+#n8,)/k,, with n an inte-
ger, fall at least as far outside the bulk ion distribution
as does w/k,. Thus, if the fundamental harmonic in-
curs only negligible ion damping, so will the higher
harmonics.

Finally, we prefer, of course, that the power dissipa-
tion be subject to the “low-D” limit as depicted in Fig.
3. It turns out that this regime is indeed attainable for
reactor parameters. We defer, however, the justifi-
cation of this point until the next section, wherein reac-
tor-relevant calculations are presented. Here, we turn
instead to the question of how these high-efficiency
waves, presumably also in the favorable low-D regime,
can, in fact, be excited.

In the stipulated frequency range w << {,, compres-
sional Alfvén waves can be excited. These waves have
the dispersion relation w=*kv,, where v, is the Alfvén

" speed. Due to the inhomogeneity of the plasma these

waves couple to the shear Alfvén waves at the shear
Alfvén resonance, w="%k.v,. At the resonance the wave
is mode-converted to a kinetic-Alfvén wave'® which is
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strongly damped on the electrons. The energy thus
dissipated will also generate current. The rate y at
which energy in the compressional Alfvén wave is
damped in this wave is given by

v/w= (w/Q)(kx)?/?, (31)

where x’ is the inhomogeneity scale length at the shear
Alfvén resonance. We have assumed that the wave has
no poloidal variation and that the lowest-order radial
mode is excited. The dominant factor here is w/S;,
which expressed in terms of @ becomes

w/Q, = anlp,/R), (32)

where 7 is the toroidal mode number, R is the tokamak
major radius and p; is the ion Larmor radius. Taking
a~6, n<10, and p,/R <107, we see that w/Q,; and
hence y/w are very small. We shall see from Eq. (39)
that the normal damping for the compressional Alfvén
waves is roughly ww where w is the normalized phase
velocity of the wave. Since w~10", this damping is
usually much larger than that due to the shear Alfvén
resonance. We therefore neglect the coupling to the
shear Alfvén resonance in what follows.

The compressional Alfvén wave dispersion relation
can be written as

R+ k2= w02, (33)

where £, is the wavenumber perpendicular to the mag-
netic field but parallel to the density and temperature
gradients. Variation in the poloidal direction is not
helpful and we assume there is none. Using Eq. (30)
in Eq. (33), yields the convenient form

2= kX(a?8/4 - 1), (34)

where 8 is the average toroidal beta, neglecting alpha
particle pressure, defined by

8 Eno(T; +7,) =4n0Tp,0
BZ/2u, Br

) (35)

where B, is the toroidal magnetic field. We assume
that 8 is given in any particular reactor design and that
Eq. (34) represents a constraint on our choice of &, and
k. in choosing the most favorable «, i.e., a=6.

In fact, except for very high-g operation, the most
favorable o cannot be obtained with the most efficient
coupling, i.e., when k, and k, are real and represent
resonant cavity modes with

k,=n/r,
ko =ln/a,

(36a)
(36b)

where n and [ are integers. [Equation (36b) is only an
approximate relation as discussed, e.g., in Ref. 5.]
As can be seen from Eq. (33), the wave parallel phase
velocity travels faster than the Alfvén speed for k,
real. Unless the Alfvén speed is very slow (8 large),
a cannot be as small as desired.

The alternative is to impose the desired parallel
phase velocity, allowing, if need be, %, to become im-
aginary. The drawback of this approach is that the
wave is inefficiently excited; there is higher reactive
power and the losses in the exciting coils are higher.
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Nevertheless, if the power dissipated in the coils is
much smaller than that dissipated in the plasma, this
alternative approach could be preferred.

The power dissipated in the coils (per unit plasma
volume) may be written as

P,=2R,H%a)/a, (37)

where H is the magnetic intensity, a is the minor ra-
dius, and R, is the surface resistivity of the exciting
structure which we will assume to be room-temperature
copper. The total power dissipated in the coils is thus
(27R)(ma®)P,. For reactive modes (k, imaginary), the
traveling magnetic field at the coil surface {which we
assume to be at »=a) is related to the traveling mag-
netic field in the plasma center by

H (a) =I,(k,a)H,(0), (38)

where x,=Im(k,) and I is the zeroth order modified
Bessel function. Since [, depends exponentially on «.a,
we expect, in view of Eq. (37), that the coil losses will
set in abruptly at a few xk,a. What we wish to determine
now is this ¢threshold” beyond which coil losses become
dominant.

We define this threshold as the magnitude of «.a for
which the power dissipated in the coils equals the power
dissipated by the plasma electrons. Assuming that the
dissipation in the plasma is linear, i.e., that operation
is in the low-D regime, the power dissipated in the
plasma is given by

Py =V 21wwl,/wi)wu, HEO0) , (39)

where we assume that the traveling parallel magnetic
field in the plasma is given approximately by H, (»=0).
Using Eqs. (37), (38), and (39), we find

P, 1( R, )(2)1/23; s
To 2 s \(2 I
P, wl\awug/\7 w?, olk,)

AT
=4 x 10 ;{}m‘ 3 Ii(kea) , (40)

where the second approximate equality assumes room-
temperature closely spaced copper coils, and X, and a
are given in meters and T, is the plasma temperature
normalized to 10 keV. The threshold wavenumber is
obtained when

K= T, (41)

which corresponds to P,/Py~1 when T\y~1, B=5%, w
=0.1, and A,~a=1. The threshold is, however, insen-
sitive to the precise plasma and wave parameters.
Thus, Eq. (41) may be taken as a restriction on k, in
any reactor environment.

These alternatives and restrictions are graphically
displayed in Fig. 7. Lines of constant o for a given B
emanate from the origin at varying slopes. If a wave-
guide mode is to be excited (k, real), then operation is
favored at k, =%/a and k,=n/R, where n is an integer
and is taken as large as possible. The minimum « in
this scheme is a=2/82, which is optimum for 8=10%
but not for smaller 8. The main tradeoff here is smali-
er o versus a large number of coils to define a high-n
mode. There is also a theoretical limitation on n due
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FIG. 7. Grid of mode numbers. The hatched region is for-
bidden due to large coil losses. For a given B8, o <6 is for-
bidden due to ion Landau damping. For clarity, the line 1/R?,
corresponding to n=1, is drawn higher than for most R /a.

to the condition w < €;/2, but this limit, n< &R/ (12v,;),
is not approached in practice.

The alternative favors low-k, operation, the minimum
allowable k. being k,=1/R. Here, k, is allowed to be
imaginary in order to lie on the line of most favorable
@, which for 8<10% will be located in the upper-left
quadrant. For «, to be minimized, representing less
damping in the coils, it is desirable to have low k. If
k, is not very small, and should B be so low that this
corresponds to k2> 7°/a?  operation in this regime is
not worthwhile.

Assuming no dissipation other than in the plasma or
the coils, Fig. 7 indicates, for the usual reactor pa-
rameters, that an z=1 traveling Alfvén wave, with k&,
imaginary, is the best course to follow in order to
minimize the power dissipated. However, in practice,
the plasma-coil system is itself contained in the reac-
tor walls, which may be conducting, and hence subject
to eddy-current losses. We make no attempt here to
look for an optimization to this larger problem. How-
ever, we should note that in the event that the first con-
ducting wall is at least a minor radius away from the
Alfvén-wave coils, the reactive magnetic field is not so
compressed that the losses in the wall exceed those in
the coils. An optimized design of the first wall would
introduce sufficient insulating breaks to minimize the
field compression and prevent the wall currents from
producing a cancelling magnetic field in the plasma. It
should be emphasized that the alternative option
wherein plasma waveguide modes are excited, does
not require tampering with the first wall. The opti-
mized design would examine the trade-off between the
decreased dissipation in the plasma in the reactive li-
mit at the expense of redesigning or relocating the first
wall.

VIil. APPLICATION TO A REACTOR

The primary application of driving currents with low-
frequency waves is the continuous operation of a toka-
mak reactor through the indefinite sustaining of the po-
loidal magnetic field. In this context, the amount of
power required to maintain the current is of crucial

37 Phys. Fluids, Vol. 24, No. 1, January 1981

importance. Minimizing this power dissipation relies
on the excitation of the most favorable waves, as dis-
cussed in Sec. VII, which includes the attainment of

the low-D regime. We point out in this section that the
low-D regime is, in fact, attainable, and we compare
low-frequency waves to high-frequency waves as mech-
anisms of current generation.

Supplying the current necessary to achieve continuous
operation implies that the poloidal magnetic field B, is
completely sustained by the wave-generated current J.
By Ampére’s law we have

B, = pqal/2. (42)
We assume that operation is achievable at 8, =R/a,
where we define
8 =n0(Tg + T ~4n0Tu0
e B:/ 2, h Bi

, (43)

where we assumed, for convenience only, T,~T,.
Combining Eqs. (42) and (43) and making use of the as-
sumed operating regime for B,, we can write

02‘ 1z 6( 14 lO)lleA
=4 =1. 1 =2 Pt 44
J 4( ; R) 1.4x 10 1R1 T ( )

where a, and R, are, respectively, the minor and major
radii given in meters, where »,, is the density normal-
ized to 10** ¢cm™ and where T,, is the temperature nor-
malized to 10 keV. The normalized J, that we make
more frequent use of than the dimensional J, can now
be written as

c

wye! aR

where ¢ is the velocity of light. For a,R, =25, n, =1,
and the spectrum situated at, say 0.1<w <0.3, the re-
quired normalized D to drive the normalized current
given by Eq. (45} is about 7x10"°, which is well into
the low-D regime, as can be seen from Fig, 3.

J=4 =2.1x10"%(n,a,R,)"/?, (45)

Having ascertained that operation in the low-D re-
gime is attainable in typical reactors near the optimum
spectrum location (i.e., low w), we can make use of
Eqs. (26) and (27) to write the crucial parameter

1_-’1 ___0.9510gA Py/d
P, ) (n,,T 100, R )Y 2 (8T, -2)°

€= (46)
where P, is the fusion power density and P, is the rif-
power dissipated in the plasma. On the right-hand side
of Eq. (46), all quantities are normalized; Py/J is as
given by Eq. (27). In writing the right-hand side of
Eq. (46), we linearized the dependence of P, on tem-
perature, so that P, agrees with the exact fusion power
density at T,,=1 and T,,=2. This linearization sup-
plies a good fit for the regime of first-generation D-T
reactors, which will employ a plasma temperature
roughly between 10 and 20 keV.

Equation (46) is valid in the high-phase-velocity limit
as well as for low-phase-velocity waves. In the limit
of fast waves, Eq. (46) reduces to previously obtained
resuits. (The numerical factor given in Ref, 2 is in-
correct, however, the detailed studies reactor, per-
formed by Ehst,'” do employ a correct version of this
equation.) In order to compare the two main wave re-
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gimes wherein current generation appears attractive,
we look for the most favorable parameters that we can
expect in each regime. For high-phase-velocity waves,
such as lower-hybrid waves, we can expect w, ~4-4.5.
For low-phase-velocity waves, we can expect w,
=0.1-0.2. Obviously, it would be preferable to have
even faster waves in the former regime and even slower
waves in the latter regime, However, in hot plasmas
the wave accessibility represents a severe limit on the
fastest phase velocity, which at w, ~4 is nearly the
speed of light. The restrictions on the low-frequency
waves have been discussed in Sec. VII. Using the ex-
pected optimal parameters for each regime, we see
from Eq. (46) that to generate the same current in re-
actors, the low-frequency regime operation requires in
the range of 30%-50% as much power as the high-fre-
quency regime.

The attractiveness of the low-frequency regime rela-
tive to the high-frequency regime is more dramatic
when we consider operation in high-8 reactors and
nearer to the range of 20 keV than 10 keV. Because of
accessibility requirements, the high frequency spec-
trum must be placed at relatively slow w,, mitigating
the advantage of these waves. This constraint does not
apply to the low-frequency spectrum, which interacts
even at the higher temperatures mainly with nonrela-
tivistic resonant electrons. Thus, in high-temperature,
high-B reactors, the low-frequency method becomes
even more attractive.

Before concluding this section, fwo important points
need to be made. Firstly, the estimates of power dis-
sipation represent an ideal situation, wherein all power
is dissipated in the electrons and the efficiency of gen-
erating the wave power and delivering it to the reactor
has not been included. Yet, factors of two are quite
important here. For typical reactor parameters, cur-
rent generation with lower-hybrid waves could ideally
be in the range of €=x5%. *%'2 When the nonideal ef-
fects are included, we can expect a true circulating
power on the order of 15%. This is a substantial yet
feasible circulating power. However, it is also in the
range where a factor of three reduction, such as might
be obtained with Alfvén waves, could be of crucial im-
portance to the overall economic attractiveness of
steady -state operation.

The last point to be made here is that the overriding
concern may be for the type of launching scheme for
the waves. Waveguides are very convenient structures
for bringing lower-hybrid waves into the plasma. The
use of coils, for exciting low-frequency waves, is
problematic in reactor plasmas. The attractiveness of
the Alfvén waves will depend on whether suitable shield-
ing can be provided for the launching structure. What
we have shown here is that should the shielding problem
be solved, the power requirements for low-frequency
rf-current drive compare favorably with the high-fre-
quency method.

1X. CONCLUSIONS

The thrust of this paper has been to determine the pa-
rameters relevant to driving currents with low-frequen-
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cy waves. We found that sufficient current for steady-
state reactor operation could be obtained with low-am-
plitude waves (low-D limit), which are to be preferred,
and we numerically calculated the power cost for such
operation. This result is summarized by Eq. {(46),
which displays, as a function of design parameters,

the fraction of fusion power output that must be recycled
to support the steady-state current.

The comparison with the alternative method, current
generation with lower -hybrid waves, is facilitated by
Eq. (46). The conclusion is that the power require -
ments for Alfvén-wave current generation can be sig-
nificantly less, especially in high-8, high-temperature
reactors. In the 10 keV temperature range and assum-
ing 8= 5%, Alfvén waves can drive currents with less
than half the power required for lower-hybrid waves.

In the 20 keV temperature range, the accessibility con-
dition on lower-hybrid waves becomes more severe

with the consequence that Alfvén waves are relatively
more attractive. Certainly in later-generation ad-
vanced-fuels reactors, the temperature would be so high
that the fast wave regime would not be competitive in
terms of power cost.

In our calculations we have not included a number of
effects that could possibly affect the power dissipation.
We indicate here our expectation that these effects can
be safely neglected. For example, consider the colli-
sional dissipation in the nonresonant particles that sup-
port the wave. Although this dissipation can be impor-
tant in changing the power requirements in the high-
frequency method of current drive, it cannot be impor-
tant in the low-frequency case. This is because it is
mainly the nonresonant electrons, being lighter than the
ions, that absorb this power and with it they also absorb
the wave momentum. Since the collisionality of non-
resonant electrons does not differ significantly from that
of the resonant electrons in the case of low-frequency
current drive, the wave momentum absorbed in such a
manner will result in an additional current with much
the same characteristics. In particular, we have in
mind that J/Pa would not be significantly different. This
reasoning does not pertain to the high-frequency case,
where the nonresonant electrons are far more collision-
al than the resonant electrons, so that care must be tak-
en that the resonant region does not become so flattened
in parallel velocity space that the nonresonant absorb-
tion dominates.?

We have also ignored radiation losses from the plas-
ma. In the case of low-frequency waves, the electron
distribution function remains nearly Maxwellian, so that
radiation losses should not be any greater than when the
current is driven by the conventional Ohmic transform-
er coils. In fact, the losses could be smaller because
no runaway electrons are produced. This reasoning
would not apply to the case of high-frequency waves,
which produce a large distortion from the Maxwellian
distribution at high velocities. In such a case, radia-
tion losses become more important, although not nec-
essarily intolerable.

These two effects, collisional absorption and radiation
losses, pertained more to the case of high-frequency
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than low-frequency current drive. Now, we turn to an
effect that has far more relevance to the low-frequency
case, namely, the neoclassical effects of trapped elec-
trons. In the case of lower-hybrid waves, the reso-
nant electrons are nearly all circulating. The current
carried by slower electrons is negligible in any case,
so that trapped-nonresonant-electron effects can hardly
matter. On the other hand, in the low-frequency case,
nearly all the electrons that absorb the wave energy
and momentum are trapped and hence they carry no
current,'® This would appear to render our calcula-
tions inapplicable except near the magnetic axis where
there are no trapped electrons.

Nonetheless, for steady-state reactor operation, the
fact that the resonant electrons are trapped presents
no problem. Here we sketch the argument, also given
elsewhere,!* that leads us to this conclusion, Where-
as the resonant trapped electrons do not carry current,
they nevertheless do absorb canonical toroidal angular
momentum. In the absence of a mechanism for losing
this momentum, such as collisions, they must drift
toward the magnetic axis. (Collisions would simply
distribute the current to circulating electrons,and,
hence, are not relevant to the argument here.) Ina
true steady state, this inward drift must be balanced by
an outward flux of electrons. An outward flux of elec-
trons, however, drives the bootstrap current. Thus,
the trapped electrons, while not directly carrying cur-
rent, do generate an equivalent current through the
bootstrap effect.

The crucial assumption here is that a steady state has
been achieved. This may be safely assumed in reac-
tors, but not in present-day tokamak experiments. For
the bootstrap current to compensate for the current lost
in the trapped electrons, the pressure produced by the
inward drift must be high enough to force the compen-
sating outward flow. This will occur only when g, ~1,
which is a higher 8 than that reached by most present-
day tokamaks. On such tokamaks, experiments on low-
frequency current drive will encounter complications
due to trapped electrons, which will prefer to pinch in-
ward rather than generate current.

We wish to remark that the calculations presented

can apply even in situations where g, =1 is not achieved.

The point is that mechanical angular momentum, in-
jected into trapped electrons, increases the canonical
angular momentum of the electrons even if no current
is produced. The opportunity then exists for an effi-
cient conversion of this momentum, which lies in the
vector potential part of the canonical momentum, into
electron mechanical momentum. The conversion may
be achieved either by a pressure gradient, i.e., 3,=1
as discussed here, or by some other means. Such
other means could, for example, be the selective trap-
ping and detrapping of electrons by cyclotron waves.!®
In principle, this conversion may be performed with
negligible power dissipation. The calculation of J/Pd
would then be governed by the primary process, i.e.,
momentum input via Alfvén waves, which is the cal-
culation that we have presented.
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Against our calculations that low-frequency current
drive can be accomplished with less power dissipation
than high-frequency current-drive must be set other
reactor design criteria. Of paramount importance is
the ability to place coils in a reactor environment.
Until this problem is solved, the high-frequency meth-
od of current drive, which can utilize waveguides in-
stead of coils, will remain more attractive even with
higher power dissipation. We remark that recent con-
siderations of the placement of limiters in reactor en-
vironments, e.g., Ref. 16, have relevance also to the
placement of coils in that their design criteria are
quite similar.

Finally, we wish to point out that although we have
considered two highly favorable wave regimes in terms
of power dissipation, we make no claim that there are
not even more favorable regimes. In fact, as pointed
out in Ref. 14, there exists the theoretical possibility
of driving relatively collisionless electrons with waves
with high-momentum content, thus exploiting the advan-
tages of both wave regimes, while encountering neither
disadvantage. This possibility, which relies on accel-
eration of electrons at the cyclotron resonance, does
have drawbacks which may make it unfeasible. How-
ever, it does illustrate that the quest for the most ef-
ficient waves to drive currents in a tokamak reactor
may not yet have uncovered the optimum wave.
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